Marseille,
les ateliers de potiers
du XIIIe s. et le quartier
Sainte-Barbe (Ve-XVIIe s.)

sous la direction d'Henri Marchesi,
Jacques Thiriot, Lucy Vallauri
avec la collaboration de Marie Leenhardt

65

DOCUMENTS D'ARCHÉOLOGIE FRANÇAISE

MINISTÈRE DE LA CULTURE ET DE LA COMMUNICATION
MINISTÈRE DE L'ÉDUCATION NATIONALE, DE LA RECHERCHE
ET DE LA TECHNOLOGIE
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
ASSOCIATION POUR LES FOUILLES ARCHÉOLOGIQUES NATIONALES

AVEC LE CONCOURS DE LA VILLE DE MARSEILLE

ÉDITIONS DE LA MAISON DES SCIENCES DE L'HOMME / PARIS 1997
Chapitre 4

Les productions céramiques

Lucy VALLAURI, Marie LEENHARDT
avec la collaboration de Maurice PICON et Yves PORTER
exclure que les potiers se soient approvisionnés pour leur céramique culinaire dans des formations superficielles de ce même bassin, aujourd'hui disparues.

4.2.2.2 Pâte calcaire

L.V.

FIG. J p. 339

Elle caractérise la production marseillaise depuis l'Antiquité et provient des piséments locaux du bassin tertiaire exploités pour la fabrication des amphores et de la vaisselle jusqu'à la fin de l'Antiquité tardive (Bertuccchi 1981a ; Bertuccchi 1981b ; Congès 1981 ; Conche, Mellin-
nand 1995 : 139 ; Pelletier et al. 1995). C'est une argile fine avec peu d'inclusions, tendre au toucher et qui donne des cassures lisses difficiles à coller. Homogène à première vue, ce large groupe réunit des pâtes de couleurs différentes variant du beige chamois au jaune clair, au rose et jusqu'au rouge brique (fig. 155, n° 3, 4). Ces nuances peuvent s'expliquer soit par des compositions de pâtes, soit par des phénomènes de cuisson. Les changements de couleur peuvent être en partie liés à la température de cuisson : les pâtes roses sont souvent insuffisamment cuites et les pâtes jaune clair surcuites, mais le taux de calcaire reste l'élément le plus déterminant. Le choix des échantillons analysés s'est fait à partir de ces observations, mais aussi par phases et complements de fours afin de déterminer si l'approvisionnement en argile avait varié pendant la durée de l'atelier.

4.2.2.3 Pâtes réfractaires

M.L.

La première est une argile beige, grossière, caractérisée par d'abondantes inclusions brunes ferrugineuses. Sa surface est rugueuse ou bosselée. Ce groupe très minoritaire est réservé pour des poteries à usage bien spécifique, les alambics (cf. infra § 4.4.5.23). L'allure de la pâte et surtout le type d'inclusions évoquent les pâtes kaoliniques réfractaires produites dans la région d'Ollières (Var). Les analyses de laboratoire ont confirmé cette hypothèse (fig. 155, n° 6). Une autre argile de type kaolinique, trouvée d'inclusions siliceuses blanches, concerne d'autres poteries à usage bien spécifique : les creusets (fig. 155, n° 5). La faible quantité d'objets réalisés dans ces deux pâtes laisse subsister un doute quant à leur fabrication sur le site même des ateliers marseillais. Pourtant, la présence de glaçure stannifère sur les alambics plaiderait en faveur de cette hypothèse. Le cas des creusets reste incertain bien que plusieurs soient sans trace d'usage. Les potiers ont pu acquérir de la terre réfractaire ou faire élaborer ces objets dans les ateliers ruraux de l'arrière-pay.

4.2.2.4 Analyses géochimiques

M.P.

FIG. 156, TABL. XVIII, FIG. K p. 339

Les analyses effectuées sur les céramiques des ateliers de Sainte-Barbe à Marseille avaient plusieurs objectifs. A terme, il s'agissait de pouvoir confirmer l'existence des productions des ateliers marseillais sur des sites de consommation et de déceler la présence éventuelle d'importations dans ces ateliers. Mais il s'agissait aussi de comprendre les choix d'argile qui avaient été faits par les potiers pour chacune des productions des ateliers, et, plus simplement encore, de contribuer à la classification des productions.

L'échantillonnage étudié comprend les principales catégories de céramiques en pâte rouge et en pâte calcaire issues des comblements de fours, des dépotoirs des premier et second temps de l'atelier, soit à l'état de biscuit sans revêtement, soit émaillées ou glaçurées, ainsi que du matériel d'entourement (barres et pernettes).

Dendrogramme des céramiques analysées
(M. Picon/CNRS, M. Vichy/CNRS).

DAF n° 65 — Marseille, les ateliers de potiers du XIII e s. et le quartier Sainte-Barbe (V e-XVII e s.)
Les analyses ont été faites par fluorescence X, 20 constituants étant mesurés sur chaque exemplaire, soit 10 constituants principaux : Na, K, Mg, Ca, Mn, Al, Fe, Si, Ti, P, et 10 traces : Rb, Sr, Ba, Ni, Zn, Cr, Zr, La, Ce, V. Mais seuls 17 d'entre eux seront pris en compte pour la classification, Na, P et La ayant été éliminés pour des raisons de pollution et/ou d'imprécision des mesures.

La classification des exemplaires étudiés a été faite par analyse de grappes (en affinité moyenne non pondérée, sur variables centrées réduites correspondant aux 17 constituants retenus). Elle se présente sous la forme d'un diagramme arborescent ou dendrogramme qui montre l'existence de 6 principaux groupes de composition, désignés par les lettres de A à F, et de quelques exemplaires isolés (fig. 156). On a exclu de la classification l'ambiguous dont les composants, très différents de toutes les autres, rendaient le diagramme peu lisible. Le cas de cet exemplaire 461 particulier sera discuté plus loin.

Les compositions moyennes et les écarts-types des différents groupes sont reportés sur le tableau XVIII (les effectifs de quelques-uns des groupes étant trop faibles évidemment pour que les valeurs correspondantes soient autre chose qu'une simple indication).

On notera que trois groupes, A, C, et D, présentent des pourcentages moyens en chaux supérieurs à 15, alors que les trois autres, B, E et F, ont leurs pourcentages moyens inférieurs à 10. Il s'agit là, manifestement, pour l'atelier de Sainte-Barbe, d'une couverture technique majeure. On trouve en effet, dans les groupes riches en chaux, la totalité des faïences, mais aucune céramique à usage culinaire (c'est-à-dire pouvant servir à la cuisson des aliments). Ces dernières ne se rencontrent que dans les groupes dont le pourcentage moyen en chaux est inférieur à 10.

Cette opposition s'explique aisément d'un point de vue technologique. On sait que les argiles fortement calcaires, cuites à température élevée, présentent une grande rigidité et un coefficient de dilatation élevé, les rendant particulièrement sensibles aux chocs thermiques qui résulterent de leur usage culinaire. Mais si les pourcentages de chaux sont inférieurs – ce qui permet de cuire les argiles à des températures un peu moins hautes, et, par conséquent, de diminuer encore la rigidité des pâtes – l'utilisation culinaire des céramiques devient alors possible. Et elle l'est encore plus si un dégraissant relativement abondant existe dans ces pâtes, comme c'est le cas ici.

La division des deux ensembles susmentionnés – l'ensemble fortement calcaire A, C et D et l'ensemble moyennement ou faiblement calcaire B, E, F – en trois groupes chacun ne paraît avoir aucune signification technique particulière. On se situerait avec ces divisions dans le domaine des hasards de l'approvisionnement en argile des ateliers, dans celui des disponibilités locales ou régionales en argile, et certainement pas dans celui des techniques proprement dites. Même la signification chronologique de ces divisions n'est pas évidente, comme si les différentes variétés d'argile susceptibles d'être exploitées l'avaient été un peu au hasard et en plusieurs occasions, en ne se conformant qu'aux choix techniques majeurs que constitue leur utilisation possible pour la fabrication de céramiques culinaires et de céramiques non culinaires.

À ce cadre technique général on ajoutera quelques précisions concernant d'abord les groupes fortement calcaires, puis les autres.

<table>
<thead>
<tr>
<th></th>
<th>A n = 6</th>
<th>B n = 2</th>
<th>C n = 38</th>
<th>D n = 4</th>
<th>E n = 10</th>
<th>F n = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>K2O</td>
<td>m = 2.88</td>
<td>s = 0.27</td>
<td>m = 2.79</td>
<td>s = 0.09</td>
<td>m = 2.53</td>
<td>s = 0.32</td>
</tr>
<tr>
<td>MnO</td>
<td>3.70</td>
<td>0.45</td>
<td>2.48</td>
<td>0.16</td>
<td>4.00</td>
<td>0.64</td>
</tr>
<tr>
<td>CaO</td>
<td>15.55</td>
<td>2.23</td>
<td>9.14</td>
<td>0.76</td>
<td>21.06</td>
<td>4.28</td>
</tr>
<tr>
<td>SiO2</td>
<td>16.64</td>
<td>0.42</td>
<td>15.33</td>
<td>0.72</td>
<td>14.76</td>
<td>1.23</td>
</tr>
<tr>
<td>Al2O3</td>
<td>6.16</td>
<td>0.18</td>
<td>6.04</td>
<td>0.18</td>
<td>4.91</td>
<td>0.45</td>
</tr>
<tr>
<td>TiO2</td>
<td>53.23</td>
<td>2.82</td>
<td>62.31</td>
<td>0.51</td>
<td>51.02</td>
<td>4.14</td>
</tr>
<tr>
<td>4H2O</td>
<td>0.647</td>
<td>0.031</td>
<td>0.665</td>
<td>0.010</td>
<td>0.584</td>
<td>0.045</td>
</tr>
<tr>
<td>Rb</td>
<td>134</td>
<td>11</td>
<td>121</td>
<td>2</td>
<td>115</td>
<td>14</td>
</tr>
<tr>
<td>Sr</td>
<td>401</td>
<td>34</td>
<td>279</td>
<td>19</td>
<td>459</td>
<td>92</td>
</tr>
<tr>
<td>Ba</td>
<td>406</td>
<td>18</td>
<td>485</td>
<td>65</td>
<td>347</td>
<td>65</td>
</tr>
<tr>
<td>Ni</td>
<td>59</td>
<td>11</td>
<td>85</td>
<td>4</td>
<td>48</td>
<td>8</td>
</tr>
<tr>
<td>Zn</td>
<td>94</td>
<td>12</td>
<td>119</td>
<td>10</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>Cr</td>
<td>90</td>
<td>11</td>
<td>92</td>
<td>3</td>
<td>69</td>
<td>10</td>
</tr>
<tr>
<td>Zr</td>
<td>182</td>
<td>23</td>
<td>206</td>
<td>12</td>
<td>186</td>
<td>31</td>
</tr>
<tr>
<td>Ce</td>
<td>72</td>
<td>9</td>
<td>64</td>
<td>9</td>
<td>66</td>
<td>8</td>
</tr>
<tr>
<td>V</td>
<td>106</td>
<td>6</td>
<td>105</td>
<td>3</td>
<td>92</td>
<td>9</td>
</tr>
</tbody>
</table>

TABL. XVIII

m moyennes ; s écarts-types ; n groupes d'effectifs de la fig. 156 ; constituants principaux exprimés en pourcentages d'oxydes, traces en ppm (parties par million) de métal (M. P.).

4. Les productions céramiques
Les compositions de ces groupes s'apparentent de près aux compositions que l'on connaît à Marseille pour des céramiques d'autres périodes, et notamment de périodes plus anciennes. Les compositions du groupe C en particulier sont très proches de celles de l'atelier antique de la butte des Carmes, qui était situé à quelques centaines de mètres des ateliers de Sainte-Barbe. Les groupes A et surtout D ont des compositions un peu plus marginales, mais qui demeurent dans les limites des fluctuations que l'on peut observer dans les argiles du bassin de Marseille. C'est sans doute le hasard des approvisionnements en argile qui est à l'origine de ces groupes que ne justifie aucune caractéristique technique particulière.

Il est normal que toutes les faïences se retrouvent dans ces groupes fortement calcaires, car on admet que l'utilisation de pâtes calcaires est favorable à ce type de production, réduisant notamment les risques de «retirement» de l'émail stannifère. Et, de fait, on observe que la quasi-totalité des faïences sont en pâte calcaire, quelles qu'en soient l'époque ou l'origine. Les exceptions à cette règle sont fort rares. On peut cependant en signaler une qui concerne les faïences à décor vert et brun de l'Uzès ; elles sont en pâte réfractaire, non calcaire, mais il s’agira d’une production assez éphémère. Il n’existe par contre aucune obligation de pâte pour les glaçures plombifères.

Sans doute pourrait-on être surpris d’observer que le matériel d’entoumement, les barres en particulier, sont en pâte fortement calcaire. Mais ce serait oublier que les argiles calcaires ont l’avantage de conserver un faible retrait à l’intérieur d’une plage étendue de températures élevées, alors que le retrait des argiles non calcaires augmenterait régulièrement, voire dramatiquement, dans cette même plage de température.

Groupes moyennement ou faiblement calcaires (B, E, F)

Ces groupes, appelés pâte rouge, posent à Sainte-Barbe des problèmes assez difficiles. On remarquera d'abord que des différences de composition qui existent entre ces groupes sont plus marquées (ou du moins plus significatives pour caractériser des origines différentes) que celles qui existent entre les groupes fortement calcaires. Les examens pétrographiques en lame mince semblent d’ailleurs accéder cette hypothèse pour les groupes E et F (le groupe B n’ayant pas fait l’objet d’examens de ce type). Peut-être ces origines différentes sont-elles le reflet de difficultés rencontrées par les potiers pour se fournir en argiles aptes à la fabrication de céramiques culinaires, dans une région où les argiles fortement calcaires semblent exister partout.

Le fait qu’on ne connaît pas, dans le bassin de Marseille, d’argiles peu calcaires n’est pas un argument suffisant pour exclure une origine proche des ateliers de Sainte-Barbe, pour les argiles des groupes B, E et F. Car il n’est pas nécessaire que les gisements soient très grands pour alimenter une production importante. A vrai dire on ne s’est guère intéressé aux formations superficielles, plus ou moins décalcifiées, du bassin de Marseille. Pourtant, de telles formations semblent avoir existé. En témoignait la découverte ancienne à la Pointe-Rouge d’un atelier de céramiques qui seraient de type culinaire. L’atelier n’est malheureusement plus observable et le matériel a disparu, mais la description de la couche d’argile, observée à proximité de cet atelier, ferait bien penser à une formation superficielle décalcifiée (Vasseur 1914b : 261-262 ; Daumais 1936 : 244-249).

Quelques observations, peu déterminantes à elles seules, peuvent être invoquées en faveur d’origines qui ne seraient guère éloignées des ateliers de Sainte-Barbe, pour les argiles des groupes B, E et F, en pâte rouge. Il s’agit d’abord des pourcentages de chaux relativement élevés des céramiques des groupes B et F (respectivement égaux à 9 et 8), pourcentages qu’on observe rarement dans des céramiques culinaires de qualité. On peut penser que les potiers ont utilisé de telles argiles car c’est tout ce dont ils pouvaient disposer dans la région, alors qu’ils auraient sans difficulté pu trouver mieux, s’ils avaient fait venir leurs argiles de plus loin. Cela implique évidemment, au cas où les argiles du groupe E (dont le pourcentage moyen en chaux n’est que de 2) seraient également d’origine locale, qu’elles s’y trouveraient en quantité insuffisante, ou qu’elles présentaient d’autres défauts, dus par exemple à un dégraissage quatuzeaux beaucoup trop abondant. On peut noter enfin que les caractéristiques pétrographiques des dégraissants de tous les groupes étudiés (que ceux-ci soient fortement, moyennement ou faiblement calcaires) sont assez semblables, en revanche leur abondance est fort différente selon les groupes. Il est vrai que ces caractéristiques sont assez banales. En tout cas elles ne s’opposent pas à l’hypothèse qui voudrait que ces argiles soient originaires du bassin de Marseille. Mais la vérification d’une telle hypothèse exigerait de longues recherches qui n’ont pu être entreprises jusqu’à présent.

Cependant il existe au moins un cas d’importation lointaine d’argile dans les ateliers de Sainte-Barbe ; il est représenté dans les analyses par un unique exemplaire, NMA 461, dont on a souligné la composition très particulière qui l’avait fait retirer de la classification de la figure 156. Cette composition est reportée ci-dessous :

NMA 461 : en %
- K_2O : 1,16 ; MgO : 0,70 ; CaO : 2,09 ; MnO : 0,028 ;
- Al_2O_3 : 32,52 ; Fe_2O_3 : 11,45 ; SiO_2 : 49,09 ; TiO_2 : 1,741.

NMA 461 : en ppm
- Rb : 29 ; Sr : 123 ; Ba : 137 ; Ni : 187 ; Zn : 85 ; Cr : 232 ;
- Zr : 594 ; Ce : 287 ; V : 199.

Pour cet exemplaire, il s'agissait en réalité d'une simple vérification car l'aspect visuel de la pâte suggérait un rapprochement avec des productions bien connues du bassin de Saint-Maximin où elles constituent la catégorie B3 des fouilles de Rougeries, rapprochement que l'analyse confirme. L'importation de ce type d'argile dans l'atelier marseillais se justifie pleinement ici, malgré une distance de près d'une cinquantaine de kilomètres, car il s'agit d'une argile réfractaire de qualité, destinée à la fabrication de céramiques particulièrement, comme les clamboches en pâte émaillée (les glaçures et émaux étant d'ailleurs inconnus sur ce type de pâte grise à Rougeries).